Selasa, 14 Maret 2017

Tugas Elektronika Telekomunikasi



Nama: Revan Wicaksono
NPM: 19414119
Kelas: 3IB02



Induktansi Diri 

Macam-macam Kumparan

Induktansi Diri adalah Apabila arus berubah melewati suatu kumparan atau solenoida, terjadi perubahan fluks magnetik di dalam kumparan yang akan menginduksi ggl pada arah yang berlawanan. Ggl terinduksi ini berlawanan arah dengan perubahan fluks. Jika arus yang melalui kumparan meningkat, kenaikan fluks magnet akan menginduksi ggl dengan arah arus yang berlawanan dan cenderung untuk memperlambat kenaikan arus tersebut. Dapat disimpulkan bahwa ggl induksi ε sebanding dengan laju  perubahan arus yang dirumuskan :


\varepsilon =-L\frac{\Delta I}{\Delta t}

dengan I merupakan arus sesaat, dan tanda negatif menunjukkan bahwa ggl yang dihasilkan berlawanan dengan perubahan arus. Konstanta kesebandingan L disebut induktansi diri atau induktansi kumparan, yang memiliki satuan henry (H), yang didefinisikan sebagai satuan untuk menyatakan besarnya induktansi suatu rangkaian tertutup yang menghasilkan ggl satu volt bila arus listrik di dalam rangkaian berubah secara seragam dengan laju satu ampere per detik.


Induktansi Bersama

Induktansi Bersama
Perubahan arus pada salah satu kumparan akan menginduksi arus kumparan lain
Induktansi bersama ialah Apabila dua kumparan saling berdekatan, seperti pada gambar diatas, maka sebuah arus tetap I di dalam sebuah kumparan akan menghasilkan sebuah fluks magnetik Φ yang mengitari kumparan lainnya, dan menginduksi ggl pada kumparan tersebut. Menurut Hukum Faraday, besar ggl ε2 yang diinduksi ke kumparan tersebut berbanding lurus dengan laju perubahan fluks yang melewatinya. Karena fluks berbanding lurus dengan kumparan 1, maka ε2 harus sebanding dengan laju perubahan arus pada kumparan 1, dapat dinyatakan :
\varepsilon _{2}=-M\frac{\Delta I_{1}}{\Delta t}
Dengan M adalah konstanta pembanding yang disebut induktansi bersama. Nilai M tergantung pada ukuran kumparan, jumlah lilitan, dan jarak pisahnya. Induktansi bersama mempunyai satuan henry (H), untuk mengenang fisikawan asal AS, Joseph Henry (1797 – 1878). Pada situasi yang berbeda, jika perubahan arus kumparan 2 menginduksi ggl pada kumparan 1, maka konstanta pembanding akan bernilai sama, yaitu :
\varepsilon _{1}=-M\frac{\Delta I_{2}}{\Delta t}
Induktansi bersama diterapkan dalam transformator, dengan memaksimalkan hubungan antara kumparan primer dan sekunder sehingga hampir seluruh garis fluks melewati kedua kumparan tersebut. Alat pemacu jantung, untuk menjaga kestabilan aliran darah pada jantung pasien merupakan salah satu contoh alat yang menerapkan induktansi bersama.


Rangkaian Penala (Tuner)

Tuner, atau Penala berfungsi untuk memilih kanal / stasiun dengan cara merubah gelombang radio yang diterima antena menjadi signal IF (Intermediate Frequency). Didalam Tuner terdapat 3 rangkaian utama, yaitu : 
(1) Penguat frekuensi tinggi / Penguat RF (RF Amplifier) 
(2) Pencampur (Mixer) 
(3) Osilator lokal (Local Oscillator).

Penguat Frekuensi Radio (Penguat RF) Penguat frekuensi tinggi, seperti namanya, berguna untuk menguatkan sinyal frekuensi radio yang diterima oleh antena. Penguat RF ini harus memiliki karakteristik penguatan yang merata pada seluruh bidang frekuensi dan memiliki perbedaan penguatan antar kanal yang sekecil mungkin. Karena rasio S/N (perbandingan sinyal terhadap noise) ditentukan oleh penguat RF ini, maka penguat RF harus memiliki penguatan (gain) yang cukup besar, tetapi juga harus tetap menghasilkan distorsi yang kecil jika ternyata gelombang yang diterima sudah cukup besar, untuk itulah maka ditambahkan rangkaian kontrol penguatan otomatis (AGC / Automatic Gain Control) yang diumpan-balik kan pada rangkaian RF ini. 

Pencampur (Mixer)
Fungsi mixer adalah mencampur gelombang radio yang diterima antena yang telah dikuatkan oleh Penguat RF dengan keluaran osilator lokal sehingga diperoleh signal IF (intermediate frequency) yang merupakan selisih dari kedua frekuensi yang dicampur tersebut. Frekuensi pembawa sinyal yang dikeluarkan rangkaian mixer ini adalah dibuat tetap sebesar 38,9 Mhz yang merupakan frekuensi pembawa gambar yang didalamnya juga terdapat sinyal singkronisasi dan frekuensi sebesar 33,4 Mhz yang merupakan frekuensi pembawa suara.

Osilator Lokal (Local Oscillator) 
Fungsi osilator lokal adalah membangkitkan frekuensi yang nantinya dicampur dengan frekuensi yang diterima antena sehingga didapat frekuensi IF, frekuensi osilator lokal dapat diubah-ubah sesuai dengan kanal / saluran yang dipilih.Osilator lokal harus sangat stabil, karena jika osilator lokal mudah tergeser maka gambar dan suara tidak dapat direproduksi dengan sempurna. Untuk mendapatkan ke-stabilan ini maka ditambahkan rangkaian kontrol AFT (Automatic Frequency Tuning) atau AFC (Automatic Frequency Control) yang berguna untuk mendeteksi penggeseran frekuensi pembawa sinya IF gambar yang kemudian di umpan-balikkan ke osilator lokal, sehingga osilator lokal di-stabilkan oleh tegangan umpan-balik tersebut (tegangan AFT / AFC).


Macam-macam Trafo menurut Frekuensinya
  • Trafo Frekuensi Rendah

Trafo Adaptor
 
Trafo Output/Input
Trafo frekuensi rendah bekerja pada frekuensi audio (20Hz-20KHz) atau frekuensi diatasnya yang masih termasuk frekuensi rendah. Ciri khas trafo yang bekerja pada frekuensi rendah umumnya menggunakan inti besi yang lunak, khususnya pada range frekuensi audio. Contoh trafo frekuensi rendah yaitu Trafo Adaptor dan Trafo Output/Input.

  • Trafo Frekuensi Menengah
Karena termasuk trafo frekuensi menengah maka jenis trafo ini disebut dengan Trafo IF (Intermediate Frequncy), dan sesuai namanya trafo ini hanya bekerja pada frekuensi menengah. Umumnya trafo jenis ini digunakan untuk radio sebagai penerima frekuensi AM/FM. Di dalam trafo ini sudah terdapat lilitan baik primer maupun sekunder yang dirangkai dan di-paralel dengan kapasitor khusus guna keperluan frekuensi menengah untuk menciptakan rangkaian resonansi L-C.

Frekuensi pada trafo ini sudah ter-standarisasi frekuensi menengah yaitu 455KHz untuk keperluan Amplitudo Modulation (AM). Sedangkan untuk keprerluan Frequency Modulation(FM)  juga sudah terstandarisasi frekuensi menengah yaitu 10,7MHz.

  • Trafo Frekuensi Tinggi
Trafo Switching
Sesuai namanya trafo ini bekerja pada fekuensi tinggi. Trafo frekuensi tinggi banyak digunakan untuk kebutuhan pembangkitan frekuensi (osilator), Flyback (rangkaian televisi tabung), atau lilitan resonansi. Trafo frekuensi tinggi yang digunakan untuk osilator lebih populer dengan sebutan spul osilator. Sedangkan lilitan osilator yang sering digunakan biasanya osilator Hartley dan Coolpits.
Disamping itu pada frekuensi tinggi, trafo jenis ini juga sering digunakan untuk trafo resonansi. Trafo resonansi sendiri banyak digunakan untuk penyesuaian impedansi antara pemancar dan antena. Oleh karena itu trafo resonansi juga disebut dengan spul antena. salah satu contoh trafo frekuensi tinggi yaitu, Trafo Switching
 Trafo switching merupakan salah satu komponen trafo yang digunakan pada powersupply yang menggunakan teknologi switching. power supply jenis ini menggunakan sistem pembangkitan frekuensi tinggi yang mempunyai efisiensi yang lebih baik dibandingkan dengan power supply biasa yang masih menggunakan trafo frekuensi rendah





Sumber:
http://www.hoo-tronik.com/2016/06/jenis-trafo-dan-fungsinya-jenis-jenis.html
http://perpustakaancyber.blogspot.co.id/2014/06/pengertian-induktansi-diri-dan-induktansi-bersama-contoh-soal-induktor-jawaban-gaya-gerak-listrik-ggl-kumparan-solenoida-toroida-energi-penerapan.html
http://alhayatfalah.blogspot.co.id/2015/01/memahami-tentang-tuner-tipe-tipe-tuner.html